Abstract
This investigation presents the use of Taguchi and response surface methodologies for minimizing the burr height and the surface roughness in drilling Al-7075. The Taguchi method, a powerful tool to design optimization for quality, is used to find optimal cutting parameters. Response surface methodology is useful for modeling and analyzing engineering problems. The purpose of this paper was to investigate the influence of cutting parameters, such as cutting speed and feed rate, and point angle on burr height and surface roughness produced when drilling Al-7075. A plan of experiments, based on L27 Taguchi design method, was performed drilling with cutting parameters in Al-7075. All tests were run without coolant at cutting speeds of 4, 12, and 20 m/min and feed rates of 0.1, 0.2, and 0.3 mm/rev and point angle of 90°, 118°, and 135°. The orthogonal array, signal-to-noise ratio, and analysis of variance (ANOVA) were employed to investigate the optimal drilling parameters of Al-7075. From the analysis of means and ANOVA, the optimal combination levels and the significant drilling parameters on burr height and surface roughness were obtained. The optimization results showed that the combination of low cutting speed, low feed rate, and high point angle is necessary to minimize burr height. The best results of the surface roughness were obtained at lower cutting speed and feed rates while at higher point angle. The predicted values and measured values are quite close to each other; therefore, this result indicates that the developed models can be effectively used to predict the burr height and the surface roughness on drilling of Al-7075.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The International Journal of Advanced Manufacturing Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.