Abstract

In this paper, an artificial neural network inverse (ANNi) model is applied to optimize the thermal performance (η) of parabolic trough concentrators. A feedforward neural network architecture is trained using an experimental database from parabolic trough concentrators operations. Rim angle (φr), inlet (Tin) and outlet (Tout) fluid temperatures, ambient temperature (Ta), water flow (Fw), direct solar radiation (Gb), and the wind velocity (Vw) were used as main input variables within the neural network model to estimate the thermal performance with a correlation coefficient of R2 = 0.9996 between experimental and simulated values. The sensitivity analysis is carried out to verify the effect of all input variables. The optimal operation conditions of parabolic trough concentrators are established using artificial neural network inverse modeling (ANNi) to achieve optimal operation conditions of parabolic trough concentrators. The results indicated that ANNi is a feasible tool for Parabolic Trough Concentrators optimization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.