Abstract

Adsorption-based atmospheric water harvesting has received significant interest owing to its promise of decentralized water supply and a wide applicability. In this study, the adsorbent bed is specially designed and optimized for efficient moisture capture. A transient three-dimensional non-equilibrium model has been developed that takes both internal and external mass transfer resistances into account. It is found that the simulation results agree better with the experimental results, which indicates the reliability of the model. Then this model was applied to investigate the influence of the adsorbent bed structure, and the operating parameters on the transient distributions of the adsorbent temperature, adsorption kinetics, dynamic up-taken moisture capture, mass transfer resistance and relative capture efficiency of the adsorbent bed. ASLi30 (Activated carbon fiber + Silica gel + 30 wt% LiCl)-vapor is selected as the working pair. It has been found that generally, the effects of the air channel aspect ratio on the investigated indexes are negligibly small. A thinner layer thickness and a smaller air channel length characterize an excellent moisture capture, small vapor transport resistance and faster adsorption kinetics. By considering different parametric variations for performance optimization and the effect of operating conditions, these results provide important insights and design guidelines of adsorbent bed for efficient moisture capture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.