Abstract
PurposeThe present study spotlights the single and multicriteria decision-making (MCDM) methods to determine the optimal machining conditions and the predictive modeling for surface roughness (Ra) and cutting tool flank wear (VB) while hard turning of AISI 4340 steel (35 HRC) under dry environment.Design/methodology/approachIn this study, Taguchi L16 design of experiments methodology was chosen. The experiments were performed under dry machining conditions using TiSiN-TiAlN nanolaminate PVD-coated cutting tool on which Taguchi and responses surface methodology (RSM) for single objective optimization and MCDM methods like the multi-objective optimization by ratio analysis (MOORA) were applied to attain optimal set of machining parameters. The predictive models for each response and multiresponse were developed using RSM-based regression analysis. S/N ratios, analysis of variance (ANOVA), Pareto diagram, Tukey's HSD test were carried out on experimental data for profound analysis.FindingsOptimal set of machining parameters were obtained as cutting speed: at 180 m/min., feed rate: 0.05 mm/rev., and depth of cut: 0.15 mm; cutting speed: 145 m/min., feed rate: 0.20 mm/rev. and depth of cut: 0.1 mm for Ra and VB, respectively. ANOVA showed feed rate (96.97%) and cutting speed (58.9%) are dominant factors for Ra and VB, respectively. A remarkable improvement observed in Ra (64.05%) and VB (69.94%) after conducting confirmation tests. The results obtained through the MOORA method showed the optimal set of machining parameters (cutting speed = 180 m/min, feed rate = 0.15 mm/rev and depth of cut = 0.25 mm) for minimizing the Ra and VB.Originality/valueThis work contributes to realistic application for manufacturing industries those dealing with AISI 4340 steel of 35 HRC. The research contribution of present work including the predictive models will provide some useful guidelines in the field of manufacturing, in particular, manufacturing of gear shafts for power transmission, turbine shafts, fasteners, etc.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Multidiscipline Modeling in Materials and Structures
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.