Abstract

Abstract Particle swarm optimization (PSO) method is used for the optimization of an enzymatic hydrolysis process for the production of xylose from rice straw. The enzymatic hydrolysis process conditions such as temperature, agitation speed and concentration of enzyme were optimized by using PSO to obtain the optimum yield of xylose. Data collected from an experimental design using response surface methodology were necessitated to develop the neural network modeling. The neural network model is used as a model in objective function of PSO to predict the optimum conditions, which involved in the enzymatic hydrolysis process. The optimum value is obtained from the performance of the best particle swarm among the optimum conditions in PSO. The predicted optimum values were validated through the experiment of the enzymatic hydrolysis process. The optimum temperature, agitation speed and xylanase concentration is observed to be 50.3°C, 132 rpm and 1.6474 mg/ml, respectively. The optimal yield of xylose is predicted as 0.1845 mg/ml using PSO.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.