Abstract

For the snake-like robot with passive wheels, the side constraint force provides the required thrust which is less than the maximum static friction. Minimizing the side constraint force can reduce possibility of skidding which is important to ensure stable and efficient motion of the robot. In this paper we model the snakelike robot based on the fiber bundle theory. This method can reduce the complexity of the dynamics and derive the exact analytical solution for the side constraint force which is linear to the redundant torque. Using the linear relation, we can derive directly the optimal torque by minimizing the side constraint force. Additionally the nonholonomic constraint can be used for constructing the connection of the fiber bundle. Using the connection, we can select the gait of the snake-like robot. The position and orientation of the head can be described in terms of the special Euclidean group SE(2) which is also the structure group of the fiber bundle. Using the symmetry of the structure group, we can reduce the dynamics equations and derive the analytical solution for the side constraint force. Kinematics and dynamics simulations validate the proposed methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.