Abstract

Due to high power in-feed from photovoltaics, it can be expected that more battery systems will be installed in the distribution grid in near future to mitigate voltage violations and thermal line and transformer overloading. In this paper, we present a two-stage centralized model predictive control scheme for distributed battery storage that consists of a scheduling entity and a real-time control entity. To guarantee secure grid operation, we solve a robust multi-period optimal power flow (OPF) for the scheduling stage that minimizes battery degradation and maximizes photovoltaic utilization subject to grid constraints. The real-time controller solves a real-time OPF taking into account storage allocation profiles from the scheduler, a detailed battery model, and real-time measurements. To reduce the computational complexity of the controllers, we present a linearized OPF that approximates the nonlinear AC-OPF into a linear programming problem. Through a case study, we show, for two different battery technologies, that we can substantially reduce battery degradation when we incorporate a battery degradation model. A further finding is that we can reduce battery losses by 30% by using the detailed battery model in the real-time control stage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.