Abstract

The paper derives mathematical model and optimal operation of batch diafiltration processes with partial recirculation of retentate, i.e. batch closed-loop membrane processes. A generalized mathematical model of the process is developed in the form of a set of non-linear ordinary differential and algebraic equations. Two process variables are used as manipulated and optimized degrees of freedom: recirculation rate and diluant addition rate. Optimal operation aims to minimize a weighted combination of processing time, power consumption, and diluant consumption. A theoretical analysis of the process is combined with numerical optimization techniques. Based on selected case studies, conclusions are drawn on economics of the process operation to identify when the process design with recirculation adds substantial benefits compared to the classical (open-loop) design without recirculation. Simulation studies suggest that minimum time operation does not require recirculation loop. On the other hand, minimum power operation consumes about 70–95% less power in closed-loop design when compared to open-loop setup.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.