Abstract

This work presents the effect of the elastic foundation and the viscoelastic interface on the dynamic behavior of laminated magneto-electro-elastic rectangular plates with simply supported boundary conditions using the state space method in Laplace domain. The Kelvin-Voigt model is used to take into accounted the viscoelastic interface effects in this domain. The final solution is transferred to the time domain by the Fourier inversion method. The dynamic responses of 3D displacements, stresses, and electric and magnetic displacements are analyzed with respect to the thickness direction and the orthotropic behavior under harmonic stress. A variant of the numerical tests shown the effect of the Winkler-Pasternak elastic foundation on a magneto-electro-elastic rectangular plates dynamic behavior and may contribute to optimize the design and the manufacturing of these materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call