Abstract
In this paper, an algorithm for the inertial sensors errors reduction in a strap-down inertial navigation system, using several miniaturized inertial sensors for each axis of the vehicle frame, is conceived. The algorithm is based on the idea of the maximum ratio-combined telecommunications method. We consider that it would be much more advantageous to set a high number of miniaturized sensors on each input axis of the strap-down inertial system instead of a single one, more accurate but expensive and with larger dimensions. Moreover, a redundant system, which would isolate any of the sensors in case of its malfunctioning, is obtained. In order to test the algorithm, Simulink code is used for algorithm and for the acceleration inertial sensors modeling. The Simulink resulted sensors models include their real errors, based on the data sheets parameters, and were conceived based on the IEEE analytical standardized accelerometers model. An integration algorithm is obtained, in which the signal noise power delivered to the navigation processor, is reduced, proportionally with the number of the integrated sensors. At the same time, the bias of the resulted signal is reduced, and provides a high redundancy degree for the strap-down inertial navigation system at a lower cost than at the cost of more accurate and expensive sensors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Transactions of the Canadian Society for Mechanical Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.