Abstract

The objective of this paper is to study the mixed convective nonsimilar flow above an exponentially stretching sheet saturated by nanofluid. The leading partial differential equations (PDEs) of the problem have been modified towards dimensionless nonlinear PDEs utilizing newly proposed nonsimilarity transformations. Furthermore, local nonsimilarity procedure up to-second truncation has been operated to change the dimensionless PDEs into ordinary differential equations (ODEs). MATLAB-based algorithm bvp4c is used to observe the consequences of the distinct parameters namely Prandlt number [Formula: see text], magnetic field [Formula: see text], Lewis number [Formula: see text], Brownian motion [Formula: see text], Eckert number [Formula: see text], thermophoresis [Formula: see text] on velocity, concentration and temperature distribution are shown in graphical portray. Additional outcomes presume the heat penetration into the fluid enhances with increase in Biot number and Brownian motion. Increasing values of [Formula: see text] and [Formula: see text] cause decrease of temperature profile.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call