Abstract
In this paper, thermal behavior of GaAs/AlGaAs single quantum well (SQW) high power laser diode (HPLD) is modeled by means of finite difference method (FDM). A numerical model is introduced that calculates the time dependant axial variations of photon density, carrier density and temperature in the semiconductor laser, self-consistently. The dynamic response of the high power laserpsilas back facet temperature and the influence of the surface recombination velocity on the temperature of both facets are modeled numerically. The two-dimensional temperature distribution in the Cupper heat sink is also demonstrated. In order to gain precise results we use the Fermipsilas Golden Rule to calculate the exact temperature-dependent gain function of the quantum well laser.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.