Abstract

This paper aims to develop a predictive model and optimize the performance of the abrasive water jet machining (AWJM) during machining of carbon fiber-reinforced plastic (CFRP) epoxy laminates composite through a unique approach of artificial neural network (ANN) linked with the nondominated sorting genetic algorithm-II (NSGA-II). Initially, 80 AWJM experimental runs were carried out to generate the data set to train and test the ANN model. During the experimentation, the stand-off distance (SOD), water pressure, traverse speed and abrasive mass flow rate (AMFR) were selected as input AWJM variables and the average surface roughness and kerf width were considered as response variables. The established ANN model predicted the response variable with mean square error of 0.0027. Finally, the ANN coupled NSGA-II algorithm was applied to determine the optimum AWJM input parameters combinations based on multiple objectives.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call