Abstract
In this paper, a comparative analysis of three multi-loops control schemes dedicated to the single ended primary inductance converter (SEPIC) power factor corrector (PFC) is presented. The first control technique uses a robust hysteresis current controller; the second control strategy consists of a frequency–domain linear design of regulators on the basis of a small-signal averaged model of the converter, whereas the third control design method uses the input/output feedback linearization approach applied on the large-signal state-space averaged model of the converter. In order to verify and compare the performance of all control schemes, numerical simulations are carried out on a switching-functions-based model of the converter, which is implemented using Matlab/Simulink. The control systems are tested under both rated and disturbed operating conditions. The systems performance is evaluated in terms of source current total harmonic distortion (THD), input power factor, and DC voltage regulation toward load disturbances.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.