Abstract

ABSTRACTA model for predicting anode cover behavior inside aluminum electrolysis cells is presented. The model predicts the transformation of anode cover material into a solid crust, the melting/solidification of the bath and crust, and the heat fluxes escaping the anode cover. The model is validated with experimental data taken on industrial electrolysis cells. The temperature and positions of the top crust, the heat flux escaping the anode cover, and the height of the cavity are presented, along with the model predictions. The effect of bath temperature on the crust formation is further investigated. Results show that the bath temperature can greatly enhance the rate of crust formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.