Abstract

Whole-cell biosensors are potential candidates for on-line and in situ environmental monitoring. In this work we present a new design of a whole-cell bioluminescence biosensor for water toxicity detection, based on genetically engineered Escherichia coli bacteria, carrying a recA::luxCDABE promoter–reporter fusion. Sensitive optical detection is achieved using a single photon avalanche photodiode (SPAD) working in the Geiger mode. The present work describes a simple mathematical model for the kinetic process of the bioluminescence based SOS toxin response of E. coli bacteria. We find that initially the bioluminescence signal depends on the time square and we show that the spectral intensity of the bioluminescence signal is inverse proportional to the frequency. We get excellent agreement between the theoretical model and the measured light signal. Furthermore, we present experimental results of the bioluminescent signal measurement using a SPAD and a photomultiplier, and demonstrate improvement of the measurement by applying a matched digital filter. Low intensity bioluminescence signals were measured after the whole-cell sensors were exposed to various toxicant concentrations (5, 15 and 20 ppm).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.