Abstract

This paper presents the derivation and verification of a sinusoidal steady-state equivalent-circuit model for microfabricated inductors developed for use in integrated power electronics. These inductors have a low profile, a toroidal air core, and a single-layer winding fabricated via high-aspect-ratio molding and electroplating. Such inductors inevitably have a significant gap between winding turns. This makes the equivalent resistance more difficult to model. The low profile increases the significance of the energy that is stored in the winding, which together with the winding gap makes the equivalent inductance more difficult to model. The models presented here account for these effects. Finally, the models are verified against results from 2-D and 3-D finite-element analysis (2-D FEA and 3-D FEA) direct measurement, and from in-circuit experimentation. In all cases, the equivalent-circuit model is observed to be accurate to within several percentage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call