Abstract

This study presents the simulation, fabrication and characterization ofmicromechanical radio frequency (RF) switch with micro inductors. The inductors areemployed to enhance the characteristic of the RF switch. An equivalent circuit model isdeveloped to simulate the performance of the RF switch. The behaviors of themicromechanical RF switch are simulated by the finite element method software,CoventorWare. The micromechanical RF switch is fabricated using the complementarymetal oxide semiconductor (CMOS) and a post-process. The post-process employs a wetetching to etch the sacrificial layer, and to release the suspended structures of the RF switch.The structure of the RF switch contains a coplanar waveguide (CPW), a suspendedmembrane, eight springs and two inductors in series. Experimental results reveal that theinsertion loss and isolation of the switch are 1.7 dB at 21 GHz and 19 dB at 21 GHz,respectively. The driving voltage of the switch is about 13 V.

Highlights

  • Radio frequency (RF) switches are important components in wireless communication systems [1]

  • The fabrication of the RF switch consisted of defining the coplanar waveguide (CPW) lines of AuGeNi/Au, depositing a dielectric layer of SiN and a sacrificial layer of polyimide, electroplating a membrane of Au and using developer to remove the sacrificial polyimide layer

  • A micromachined microwave switch proposed by Chang et al [5] was made on a semi-insulating GaAs substrate using a surface micromachining process, in which the process included using lift-off technique to pattern the CPW lines of Cr/Au, depositing a dielectric layer of SiO2 and a sacrificial layer of amorphous silicon, defining the actuator structure layers of Al/Cr deposited by electron beam evaporation, and etching the sacrificial amorphous silicon layer to release the actuator structure

Read more

Summary

Introduction

Radio frequency (RF) switches are important components in wireless communication systems [1]. The actuation voltage of the switch was about 17 V, and the switch had an insertion loss of 0.25 dB at 25.6 GHz and an isolation of 42 dB at 24.5 GHz. A micromachined microwave switch proposed by Chang et al [5] was made on a semi-insulating GaAs substrate using a surface micromachining process, in which the process included using lift-off technique to pattern the CPW lines of Cr/Au, depositing a dielectric layer of SiO2 and a sacrificial layer of amorphous silicon, defining the actuator structure layers of Al/Cr deposited by electron beam evaporation, and etching the sacrificial amorphous silicon layer to release the actuator structure. The switch had an actuation voltage of 26 V, and the insertion loss and isolation of the switch were 0.2 dB at 10 GHz and 17 dB at 10 GHz. Park et al [6] manufactured an RF MEMS capacitive switch using a surface micromachining process. In order to investigate the switch more deeply, an equivalent circuit is developed to evaluate the insertion loss and isolation of the switch

Simulation of the RF switch
Fabrication of the RF switch
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call