Abstract

The presence of lead and its associated toxicity represents a hindrance to the broad commercial production of lead halide perovskites and their utilization in solar photovoltaic devices. Although lead halide perovskites have found extensive application in solar cell technology, questions have arisen regarding the hazardous nature and durability of lead (Pb) in photovoltaic systems. This research seeks to address these concerns by exploring alternative materials, such as tin-based perovskites, to pave the way for cleaner and more sustainable energy solutions. The scientific community has shown increased interest in tin-based perovskites due to their superior efficiency and stability compared to lead-based perovskite solar cell. This research introduces a planar heterojunction solar cell utilizing tin-based perovskites that are free of lead. The simulation task was conducted using SCAPS-1d software. Device parameters for a lead-free PSC (perovskite solar cell) using significant framework FTO/WS2/CH3NH3SnI3(perovskite)/CuSbS2 included an examination of factors like perovskite layer thickness, the obsession of acceptors in the perovskite layer, defects density of perovskite layer, and the band gap of the perovskite layer. In this setup, WS2 served as the ETL material, CuSbS2 functioned as the HTL material, and the CH3NH3SnI3(Perovskite) was used as the absorber layer material. This configuration achieved an impressive PCE 32.5%, along with a Jsc34.1mAcm-², Voc1.02V and FF85.5%. These optimized results likelihood indicates the strong prospect for development of an eco-friendly and efficient model of PSC (perovskite solar cell).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.