Abstract

Subsurface mass-transport deposits (MTDs) commonly have a chaotic seismic-reflection response. Synthetic seismic-reflection profiles, created from a precise lithological model, are used to interpret reflection character and depositional geometries at multiple frequencies. The lithological model was created from an outcrop of deep-water lithofacies where sandstone deposition was influenced by mass-transport deposit topography. The influence of MTD topography on sandstone distribution should be considered in reservoir characterization and modeling when MTDs underlie the reservoir, especially if the reservoir is thin relative to the scale of the topography. MTD topography up to several tens of meters in both the horizontal and vertical dimensions (relative to local elevation) compartmentalizes significant quantities of sandstone and is not resolved at lower seismic-reflection frequencies. The resolvability of thick (up to 70 m) sandstone packages is hindered when they are encased in MTDs of at least equivalent thickness. Lateral and vertical changes in seismic-reflection character (e.g., amplitude, polarity, geometry) of sandstone packages in the synthetic profiles are due to lithology changes, tuning effects, resolution limits, and depositional geometries, which are corroborated by the lithological model. Similar reflection-character changes are observed in an actual seismic-reflection profile, of comparable scale to the synthetic profiles, from the Gulf of Mexico, which demonstrates similar lithofacies distributions. Synthetic profiles, when constrained by a precise lithological model, are particularly useful analogues for interpretation of lithofacies relationships, and depositional geometries, in complicated depositional environments, such as deep-water slope deposits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.