Abstract

Trust miscalibration remains a major challenge for human-machine interaction. It can lead to misuse or disuse of automated systems. To date, most trust research has relied on subjective ratings and behavioral or physiological data to assess trust. Those trust measurements are discrete, disruptive and quite difficult to implement. To better understand the process of trust calibration, we propose eye tracking as an unobtrusive method for inferring trust levels in real time. Using an Unmanned Aerial Vehicle simulation, participants were exposed to varying levels of reliability of an automated target detection system. Eye movement data were captured and labeled as high or low trust based on subjective trust ratings. Feature extraction and raw eye movement data were compared as input for multiple classification modeling methods. Accuracy rates of 92% and 80%, respectively, were achieved with individual-level and group-level modeling, suggesting that eye tracking is a promising technique for tracing trust levels.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.