Abstract
In this paper, we investigate one of the important parameters (increase of infrared imaging sensitivity) in bioimaging applications that play a vital role (easy detection by nonsensitive detector) in the thermal imaging of breast cancer. It is known that differences in energy consumption exist for normal and abnormal tissue and that these differences lead to small but detectable local temperature changes if a tumor in the breast cancer is full grown. Infrared imaging has been used in tumor detection, but if the tumor is in the early stage of development, the common instrumentation is not sensitive enough to detect the subtle changes in temperature required for accurate diagnosis. Therefore, the disease can enter a dangerous stage of rapid growth. For detection of its early-stage progression, the onion-like quantum-dot quantum-well (QDQW) heteronanocrystal (CdSe/ZnS/CdSe/ZnS), for the first time, is proposed and used to increase the sensitivity of thermal detection. Indeed, the injected quantum-dots in the breast are excited by an external laser radiation source. In this study, the bioheat transfer equation is solved by the 2-D finite element approach for a simplified model of a female breast and a cancerous tumor. The results of simulations will reveal that the local temperature change detections considerably increased by using a new modified structure of quantum dot localized in tumor site.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.