Abstract

AbstractTandem device architectures offer a route to greatly increase the maximum possible power conversion efficiencies (PCEs) of polymer solar cells, however, the complexity of tandem cell device fabrication (such as selecting bandgaps of the front and back cells, current matching, thickness, and recombination layer optimization) often result in lower PCEs than are observed in single‐junction devices. In this study, we analyze the influence of front cell and back cell bandgaps and use transfer matrix modeling to rationally design and optimize effective tandem solar cell structures before actual device fabrication. Our approach allows us to estimate tandem device parameters based on known absorption coefficients and open‐circuit voltages of different active layer materials and design devices without wasting valuable time and materials. Using this approach, we have investigated a series of wide bandgap, high voltage photovoltaic polymers as front cells in tandem devices with PTB7‐Th as a back cell. In this way, we have been able to demonstrate tandem devices with PCE of up to 12.8% with minimal consumption of valuable photoactive materials in tandem device optimization. This value represents one of the highest PCE values to date for fullerene‐based tandem solar cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call