Abstract

We present a new class of models, called uncertain-input models, that allows us to treat system-identification problems in which a linear system is subject to a partially unknown input signal. To encode prior information about the input or the linear system, we use Gaussian-process models. We estimate the model from data using the empirical Bayes approach: the hyperparameters that characterize the Gaussian-process models are estimated from the marginal likelihood of the data. We propose an iterative algorithm to find the hyperparameters that relies on the EM method and results in decoupled update steps. Because in the uncertain-input setting neither the marginal likelihood nor the posterior distribution of the unknowns is tractable, we develop an approximation approach based on variational Bayes. As part of the contribution of the paper, we show that this model structure encompasses many classical problems in system identification such as Hammerstein models, blind system identification, and cascaded linear systems. This connection allows us to build a systematic procedure that applies effectively to all the aforementioned problems, as shown in the numerical simulations presented in the paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.