Abstract

The performance of smart structures in trajectory tracking under sub-micron level is hindered by the rate-dependent hysteresis nonlinearity. In this paper, a Hammerstein-like model based on the support vector machines (SVM) is proposed to capture the rate-dependent hysteresis nonlinearity. We show that it is possible to construct a unique dynamic model in a given frequency range for a rate-dependent hysteresis system using the sinusoidal scanning signals as the training set of signals for the linear dynamic subsystem of the Hammerstein-like model. Subsequently, a two-degree-of-freedom (2DOF) H ∞ robust control scheme for the rate-dependent hysteresis nonlinearity is implemented on a smart structure with a piezoelectric actuator (PEA) for real-time precision trajectory tracking. Simulations and experiments on the structure verify both the effectiveness and the practicality of the proposed modeling and control methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call