Abstract
This paper presents a general dynamic model that describes the two-dimensional grasp by two robotic fingers with soft fingertips. We derive the system's kinematics and dynamics by incorporating rolling constraints that depend on the deformation and on the rolling distance characteristics of the fingertips' material. We analyze the grasp stability at equilibrium, and conclude that the rolling properties of the fingertips can play an important role in grasp stability, especially when the width of the grasped object is small compared to the radius of the tips. Subsequently, a controller, which is based on the fingertips' rolling properties, is proposed for stable grasping concurrent with object orientation control. We evaluate the dynamic model under the proposed control law by simulations and experiments that make use of two different types of soft fingertip materials, through which it is confirmed that the dynamic model can successfully capture the effect of the fingertips' deformation and their rolling distance characteristics. Finally, we use the dynamic model to demonstrate by simulations the significance of the fingertips' rolling properties in grasping thin objects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.