Abstract

In addressing the global challenges posed by COVID-19, this study introduces a mathematical model aimed at investigating the transmission dynamics of COVID-19 and forwarding strategies for controlling it. By employing Lyapunov functions, we perform a thorough stability analysis of both disease-free and endemic equilibria. We calibrated the model using daily COVID-19 data from early 2022 in Ethiopia, after vaccination initiation. A global sensitivity analysis confirmed the robustness of the model. In addition, we extended the model to address optimal control by incorporating vaccination, public health education, and treatment. Our findings highlight the effectiveness of individual control measures and reveal that vaccination, public health educational campaign and treatment is the most cost-effective method for mitigating COVID-19 spread.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call