Abstract

In this paper we concentrate on aspects related to modeling and formal verification of embedded systems. First, we define a formal model of computation for embedded systems based on Petri nets that can capture important features of such systems and allows their representation at different levels of granularity. Our modeling formalism has a well-defined semantics so that it supports a precise representation of the system, the use of formal methods to verify its correctness, and the automation of different tasks along the design process. Second, we propose an approach to the problem of formal verification of embedded systems represented in our modeling formalism. We make use of model checking to prove whether certain properties, expressed as temporal logic formulas, hold with respect to the system model. We introduce a systematic procedure to translate our model into timed automata so that it is possible to use available model checking tools. We propose two strategies for improving the verification efficiency, the first by applying correctness-preserving transformations and the second by exploring the degree of parallelism characteristic to the system. Some examples, including a realistic industrial case, demonstrate the efficiency of our approach on practical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.