Abstract
To capture the volatility in the global food commodity prices, we employed two competing models, the thin tailed the normal distribution, and the fat-tailed Student t-distribution models. Results based on wheat, rice, sugar, beef, coffee, and groundnut prices, during the sample period from October 1984 to September 2009, show the t-distribution model outperforms the normal distribution model, suggesting that the normality assumption of residuals which are often taken for granted for its simplicity may lead to unreliable results of the conditional volatility estimates. The paper also shows that the volatility of food commodity prices characterized with the intermediate and short memory behavior, implying that the volatility of food commodity prices is mean reverting.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.