Abstract
Univariate and multivariate autoregressive integrated moving average (ARIMA) models were used to model and forecast the monthly pelagic production of fish species in the Mediterranean Sea during 1990–2005. Autocorrelation (AC) and partial autocorrelation (PAC) functions were estimated, which led to the identification and construction of seasonal ARIMA models, suitable in explaining the time series and forecasting the future catch per unit of effort (CPUE) values. Univariate and multivariate ARIMA models satisfactorily predicted the total pelagic fish production and the production of anchovy, sardine, and horse mackerel. The univariate ARIMA models demonstrated a good perpormance in terms of explained variability and predicting power. The current findings revealed a strong autoregressive character providing relatively high R 2 and satisfactory forecasts that were close to the recorded CPUE values. The present results also indicated that the multivariate ARIMA outperformed the univariate ARIMA models in terms of fitting accuracy. The opposite was evidenced when testing the forecasting accuracy of the two methods, where the univariate ARIMA models overall performed better than the multivariate models. The observed seasonal pattern in the monthly production series was attributed to the intrinsic nature of the pelagic fishery. As anchovy, sardine, and horse mackerel represent main target species in the Mediterranean pelagic fishery, the findings of the present study provided direct support for the potential use of accurate forecasts in decision making and fisheries management in the Mediterranean Sea.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.