Abstract
This study challenges the prevailing belief in the necessity of complex models for accurate forecasting by demonstrating the effectiveness of parsimonious econometric models, namely ARCH(1) and GARCH(1,1), over deep learning robust approaches, such as LSTM and 1D-CNN neural networks, in modeling historical volatility within pre-emerging stock markets, specifically the Moroccan and Bahraini stock markets. The findings suggest reevaluating the balance between model complexity and predictive accuracy. Future research directions include investigating the potential existence of threshold effects in market capitalization for optimal model performance. This research contributes to a deeper understanding of volatility dynamics and enhances forecasting models’ effectiveness in diverse market conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.