Abstract

To enable the smart technologies and safe operation of transit and rail transportation, such as hot box detector, track health monitoring and wireless communication on the railroad side, a cost-effective energy source is in need. This paper presents the design, modeling, in-lab experiment and field-test results of a compact ball-screw based electromagnetic energy harvester with a mechanical motion rectifier (MMR) mechanism for smart railway transportation. The MMR mechanism is realized by the embedded one-way clutches in the bevel gears, which converts the bi-directional track vibration into the unidirectional rotation of the generator. Compared to previous designs, the proposed harvester has reduced backlash and thus can harvest energy from a small input of the track deflection induced by the moving train. Two prototypes with different key design parameters were built and tested. A comprehensive model considering the train-rail-harvester interaction was developed to analyze the dynamic characteristics of the coupled system and predict the energy harvesting performance of the harvesters at different train speeds. Both in-lab and field tests were carried out to examine the energy harvesting performance of the harvesters and validate the model. Field test results illustrated that an average power of 1.12 W and 2.24 W were achieved for two prototypes respectively when a Type A rapid transit passed by with a 30 km/h vehicle speed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.