Abstract

In this study, inspired from human cochlea, we propose an artificial basilar membrane structure based on an array of gold electrodes microfabricated along the opposite surfaces of a piezoelectric continuum. The proposed piezoelectric continuum features an isosceles trapezoidal geometry and is situated atop an elastomer matrix with embedded electrode grooves and a duct. At first, a detailed analytical model is presented, which formulates the continuum’s planar deflection equation, governing its elastodynamic behavior. Subsequently, in order to verify the analytical outcomes, a multiphysics finite-element analysis is performed in COMSOL®. Both analytical and numerical models demonstrate desired frequency selectivity akin to the capability of a biological basilar membrane. Subsequently, a proof-of-concept model of the proposed structure is custom-fabricated through standard photo- and soft lithography techniques using Polyvinylidene Difluoride (PVDF), gold, and Polydimethylsiloxane (PDMS) materials. Finally, the fabricated artificial basilar membrane that is intended to be used as a broad band sensor, and artificial cochlea for seamless human-robot interaction is experimentally characterized using a custom-built acoustic exciter, and its effective performance is validated within the frequency range of 3 kHz to 8 kHz.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call