Abstract

This paper presents a transient heat and mass transfer model with experimental validation of a finned cylindrical adsorbent bed for performance analysis in chemisorption refrigeration system. The approximate solution for the mathematical model, including transient heat and mass transfer equations in cylindrical coordinates, was obtained by implementing the Crank-Nicholson approach in a finite difference scheme. Geometrical configuration and physical parameters, including bed material thermal properties and TGA-based kinetic modeling for reaction rate estimation, were used as model data inputs to predict thermal bed distribution, heat flows, and coefficient of performance for a refrigeration system. Results from the model were validated with transient data from a chemical sorption refrigeration test bench. Refrigeration system reactor was made of expanded graphite/activated carbon/lithium chloride (AC/EG/LiCl)-adsorbent (NH3 in solution with a 25% concentration). The model demonstrated excellent agreement and an adequate representation of the physical phenomena, constituting a potential tool for efficiency-enhancing development of adsorption reactors for refrigeration systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.