Abstract

The utilization of the ultraviolet (UV) portion of the solar spectrum to drive the chemical destruction of organic pollutants in contaminated air and wastewaters has gained an increasing interest in the last two decades. A nonconcentrating, flat-plate solar photoreactor has been modeled and experimentally verified. The mathematical model considers that the reactor glass window receives direct and diffuse (isotropic) solar radiation. The model was solved numerically and predictions were compared with photodecomposition rate data, employing the uranyl oxalate actinometer. The reaction was conducted in an isothermal, perfectly mixed reactor placed inside a batch recycling system. The experimental values were compared with theoretical predictions and good agreement was obtained, the maximum deviation being 12%. The effect of the actinometer concentration and of the solar zenith angles (for horizontal and tilted reactors) on the actinometer decomposition rate was investigated. Results indicated that the uranyl oxalate reaction rate increases when (1) the initial actinometer concentration increases at almost constant solar zenith angle and (2) the zenith angle decreases at the same initial actinometer concentration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call