Abstract

Abstract The influence of thermal and electrical conductivities and relative density on the dynamics of self-sustaining reactions activated by an electric field was investigated by modeling. Under a given field, the variation of the wave velocity and maximum temperature with normalized electrical and thermal conductivities and density exhibited a maximum at an optimum value of each of the three parameters. The results are discussed in terms of a Fourier relationship modified by the Joule heat contribution of the imposed field. A simulation was also made to investigate the configuration of the reaction front in systems that are ignited and sustained by a current. A transition from a volume (uniform) combustion reaction to a wavelike form was found to occur as the sample size is increased. These changes are also attributed to the interrelation between the thermophysical parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.