Abstract

Advanced ceramics have unique physical and mechanical properties. While its high hardness and low fracture toughness makes the surface quality difficult to guarantee, which seriously affect the performance and reliability of ceramic parts. As the main factor affecting the surface quality of advanced ceramics, grinding force needs effective prediction to facilitate the reasonable control. The removal mode of advanced ceramics, which may directly affect the grinding force, is usually regarded as plastic removal and brittle removal. In the grinding process, the removal modes are mainly related to the depth at which the abrasive cutting into the parts. Since the difference in the abrasive size is bound to cause the randomness of the cutting depth of the abrasive, it will have an effect on the removal modes and abrasive number involved in different removal modes, which in turn will result in a change in the grinding force. Consequently, critical cutting depth of ductile removal for brittle material is adopted to determine the critical size of the maximum abrasive for brittle-ductile removal of ceramic materials. Further, considering the difference of grinding wheel size, the number of abrasives both in brittle removal and plastic removal is discussed with probabilistic method. On this basis, grinding force model of a single abrasive is considered to set up the grinding force prediction model for advanced ceramic with different removal mode. Finally, the prediction model of advanced ceramic grinding force is verified by grinding force experiment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call