Abstract
The results of experimental and theoretical investigations of passive Q-switch Raman microchip lasers based on Nd 3+:LSB active medium and Ba(NO 3) 2 Raman crystal are presented. It has been demonstrated that intracavity Raman conversion in the microchip lasers is a simple and efficient method, capable of delivering high power pulses with sub-100 ps duration. Intracavity generation of the 1st Stokes pulses with duration from 180 down to 48 ps and a peak power of 48 kW has been performed and studied. High peak power and short duration of the 1st Stokes pulses in microchip laser with Ba(NO 3) 2 Raman crystal allows to easily perform extracavity harmonic generation and frequency sum mixing in LBO, BBO, and KTP crystals with discrete-tunable wavelength from ∼1200 down to ∼240 nm. We have developed a generalized model of Q-switched Raman microchip lasers, that takes into account spatial inhomogeneity of pump, laser, and Stokes beams, thermalization within the upper and lower multiplets of activator ions in laser medium, and saturable absorber bleaching and recovery. For the microchip lasers with different saturable absorbers, the model achieves very good agreement with the presented experimental results in a wide range of pump powers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.