Abstract
High-performance pantograph design requires control of pantograph dynamic performance. Many pantograph dynamic models developed to aid in the design process have employed two degrees of freedom, one for the head mass and one for the frame. In this paper, the applicability of these models to symmetric and asymmetric pantograph designs is reviewed. Two degree-of-freedom models have been shown to be appropriate to represent a number of symmetric pantograph designs. To represent the asymmetric designs considered in this paper, an additional degree of freedom representing frame dynamics has been introduced to yield a three degree-of-freedom nonlinear dynamic performance model. The model has been evaluated with experimental data obtained from laboratory dynamic testing of an asymmetric pantograph.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Dynamic Systems, Measurement, and Control
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.