Abstract

Understanding the dynamics of cavitation bubble clouds formed inside a human body is critical for the design of burst-wave lithotripsy (BWL), a newly proposed method that uses focused ultrasound pulses with amplitude of O(10) MPa and frequency of O(0.1) MHz to fragment kidney stones. We present modeling and three-dimensional direct numerical simulations of interactions between bubble clouds and ultrasound pulses in water. We study two configurations: isolated clouds in a free field, and clouds near a rigid surface. In the modeling, we solve for the bubble radius evolution and continuous flow field using a WENO-based compressible flow solver. In the solver, Lagrangian bubbles are coupled with the continuous phase, defined on an Eulerian grid, at the sub-grid scale using volume averaging techniques. Correlations between the initial void fraction and the maximum collapse pressure in the cloud are discussed. We demonstrate acoustic imaging of the bubbles by post-processing simulated pressure signals at particular sensor locations indicating waves scattered by the clouds. Finally, we compare the simulation results with experimental results including high-speed imaging and hydrophone measurements. The time evolution of the cloud void fraction and the scattered acoustic field in the simulation agree with the experimental results. [Funding supported by NIH 2P01-DK043881.]

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.