Abstract

Milling force is an important factor in determining the machined surface quality of carbon fibre reinforced polymer (CFRP) in milling process. This paper focuses on the radial force and tangential force under different fibre orientation angles during the milling of unidirectional T800/X850 CFRP laminates. The traditional straight slot milling is replaced by the circumferential slot milling in the experiment and the idea of small scale approximation is applied in analysis of data. Using this method, the milling force under all fibre orientation angles can be obtained approximately by a single experiment and the radial force and tangential force during the milling process can be obtained through mechanical modelling. Through processing experimental data, the coefficients in the theoretical formula of CFRP milling are fitted to get a function about milling force on cut depth, feed and tool rotation angle. And this function can be used to optimise milling parameters and fibre orientation during slot milling. [Submitted 16 January 2017; Accepted 18 December 2017]

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.