Abstract
Power generation from human-body-induced vibration faces the challenges of low frequency and high amplitude with random excitation. In such cases, employing spring-mass structure as the low frequency oscillator is unrealizable and also unreliable. Impact based frequency up-conversion mechanisms have extensively been using to overcome the challenges. Random and direct impacts on the power generating element raise the questions on reliability, as well as efficiency of the energy harvesters. In order to meet these shortcomings, we have presented a handy motion driven electromagnetic energy harvester that also uses impact based frequency up-conversion mechanism; but instead of direct impact, it utilizes transverse impact by a freely movable spherical ball. Upon handy motion excitation, the ball vibrates along a fixed–fixed cantilever beam and pushes (by transverse impact) it at right angles while comes in contact with the parabolic top surface of a proof-mass attached to the beam, allowing it to vibrate at its higher resonant frequency. Relative motion between a magnet attached to the cantilever and a coil (placed below) induces voltage. A prototype energy harvester has been fabricated and characterized. At a periodic handy motion excitation of ∼2g peak amplitude and frequency 5.8Hz, it is capable of delivering maximum 103.55μW average power (5.4μWcm−3 power density) to 85Ω matched load resistance. Experimental results reveal feasibility and reliable operation of the proposed frequency up-converting energy harvester in harvesting power from handy motion vibration. Further optimized design would be able to offer higher power density to be used efficiently for portable and wearable smart devices applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.