Abstract
This paper is concerned with the modeling and evolving of cell signaling networks (CSNs) in silico. CSNs are complex biochemical networks responsible for the coordination of cellular activities. We examine the possibility to computationally evolve and simulate Artificial Cell Signaling Networks (ACSNs) by means of Evolutionary Computation techniques. From a practical point of view, realizing and evolving ACSNs may provide novel computational paradigms for a variety of application areas. For example, understanding some inherent properties of CSNs such as crosstalk may be of interest: A potential benefit of engineering crosstalking systems is that it allows the modification of a specific process according to the state of other processes in the system. This is clearly necessary in order to achieve complex control tasks. This work may also contribute to the biological understanding of the origins and evolution of real CSNs. An introduction to CSNs is first provided, in which we describe the potential applications of modeling and evolving these biochemical networks in silico. We then review the different classes of techniques to model CSNs, this is followed by a presentation of two alternative approaches employed to evolve CSNs within the ESIGNET project. Results obtained with these methods are summarized and discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.