Abstract

Robotic-assisted minimally invasive surgery changes the direct hand and eye coordination in traditional surgery to indirect instrument and camera coordination, which affects the ergonomics, operation performance, and safety. A camera, two instruments, and a target, as the descriptors, are used to construct the workspace correspondence and geometrical relationships in a surgical operation. A parametric model with a set of parameters is proposed to describe the hand-eye coordination of the surgical robot. From the results, optimal values and acceptable ranges of these parameters are identified from two tasks. A 90° viewing angle had the longest completion time; 60° instrument elevation angle and 0° deflection angle had better performance; there is no significant difference among manipulation angles and observing distances on task performance. This hand-eye coordination model provides evidence for robotic design, surgeon training, and robotic initialization to achieve dexterous and safe manipulation in surgery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call