Abstract

A semi-empirical, stacked capacitor model was developed to calculate the dielectric constants (k) and deposition rates of hafnium silicate (HfSiO) deposited by nano-laminated atomic layer deposition (NL-ALD) from the HfO2 and SiO2 ALD cycles (m and n, respectively). The calculations agree well with the experimental data, with an accuracy of 90%. The model enables the deposition of HfSiO with desired thicknesses and any dielectric constants ranging from 7 to 19 using proper combinations of m and n. The systematic study on the effects of various combinations of m and n that give similar dielectric constants showed that increasing m and n enhances the dielectric scalability due to less defects formed at the high- k/IL oxide interface during NL-ALD, but degrades the electrical stability due to more severe charge trapping. Changing m and n has no significant effect on thermal stability and electron mobility.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call