Abstract

Modeling can play a particularly useful role in ultraviolet (u.v.) disinfection because of difficulties in measuring u.v. dose and the immediate results of disinfection. This model predicts bacterial survival in flow-through systems. The calculation takes into account the complex intensity patterns, non-ideal flow patterns, and non-linear curves of log survival vs u.v. dose. Based on the organismal dose-response, the number of survivors in each fraction of the residence time distribution is calculated separately and summed to calculate the average survival. The model uses as input data: the average u.v. intensity within the system, the residence time distribution, and an experimentally determined dose-survival curve in a simplified system where dose can be directly measured. The predictions of the model corresponded well with measured survival in a u.v. pilot plant study. The model was used to show the effects of flow dispersion on average survival by varying residence time distribution. Measures of capacity and efficiency of u.v. systems were derived and illustrated experimentally in simple cylindrical batch units and in two multiple lamp units.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.