Abstract

A new model for a smart shell of revolution treated with active constrained layer damping (ACLD) is developed, and the damping effects of the ACLD treatment are discussed. The motion and electric analytical formulation of the piezoelectric constrained layer are presented first. Based on the authors' recent research on shells of revolution treated with passive constrained layer damping (PCLD), the integrated first-order differential matrix equation of a shell of revolution partially treated with ring ACLD blocks is derived in the frequency domain. By virtue of the extended homogeneous capacity precision integration technology, a stable and simple numerical method is further proposed to solve the above equation. Then, the vibration responses of an ACLD shell of revolution are measured by using the present model and method. The results show that the control performance of the ACLD treatment is complicated and frequency-dependent. In a certain frequency range, the ACLD treatment can achieve better damping characteristics compared with the conventional PCLD treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call