Abstract

Increasing demands call for the burr-free workpiece in precision manufacturing. Low-frequency vibration-assisted drilling (LFVAD) has been applied to improve the fabrication process. Prediction and minimization of burr size are one of the major research topics in precision machining. In this paper, an LFVAD parameters optimization model was proposed including harmony search (HS) algorithm and a modified LFVAD burr height analytical model. The burr height model of LFVAD was developed using existing analytical burr height model for conventional drilling (CD) and vibration-assisted drilling (VAD). The developed burr height models were then employed with HS algorithm, which is a new meta-heuristic optimization method based on the imitation of music improvisation process, to determine the optimal machining parameters for a given twist drill that results in minimum exit burr height. Experimental results show that the burr height of the optimized LFVAD decreased by 52.75% compared with the CD, and decreased by 17.59% compared with the un-optimized LFVAD. The simulation and experimental results demonstrate that under suitable LFVAD parameters, the burr height could be reduced.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.