Abstract

Metalorganic chemical vapor deposition (MOCVD) is a critical process and is widely used for the epitaxial growth of light-emitting diode (LED) wafers. The key component, a gas injection system, delivers the gas into the reactor by using a nozzle or showerhead. In this paper, the numerical simulation method was applied to investigate the thermal fluid field and to design a new gas injection system for MOCVD. In this study, we developed a new gas injection system with inlet barriers. The inlet barriers can separate the various reactive gases, reduce the prereaction, and prevent adducted particles from forming and blocking the inlet gas system. The barrier geometry, including the barrier length, the barrier inclination angle, and the V/III precursor ratio was systematically studied to determine the optimal design conditions. Higher growth rate and improved uniformity were demonstrated using the new optimal gas inlet barrier design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.