Abstract

The growing demand for electricity and the increasing integration of clean energies into the electrical grids requires the multiplication and reinforcement of high-voltage direct current (HVDC) projects throughout the world and demonstrates the interest in this electricity transmission technology. The transmitting system of the voltage source converter-high-voltage direct current (VSC-HVDC) consists primarily of two converter stations that are connected by a dc cable. In this paper, a nonlinear control based on the backstepping approach is proposed to improve the dynamic performance of a VSC-HVDC transmission system, these transport systems are characterized by different complexities such as parametric uncertainties, coupled state variables, neglected dynamics, presents a very interesting research topic. Our contribution through adaptive control based on the backstepping approach allows regulating the direct current (DC) bus voltage and the active and reactive powers of the converter stations. Finally, the validity of the proposed control has been verified under various operating conditions by simulation in the MATLAB/Simulink environment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.